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S1 Examples of metacommunities with more species
than communities

Consider metacommunity I with two sites (1 and 2) and three species (S; and S5):

S1 Sy
Community 1/1 0
Community 2\ 0 1

Now add a new common species, S3, to create metacommunity I1:

Sy Sy S
Community 1/1 0 1
Community 2\ 0 1 1

Now add many new common species to create metacommunity III:

Sl SQ Sg Ce Sk
Community 1/1 0 1 ... 1
Community 2\ 0 1 1 ... 1

Let’s compare how classic and geometric approaches differ in beta diversity values:

1. classic approach (Whittaker’s ratio):

o Metacommunity I: 5y =2/1 =3
o Metacommunity II: 5;; =3/2=1.5
o Metacommunity III: 5777 = % (approches 1 with higher k)

2. Geometric approach:
« Metacommunity I: 8; = 2 x (1/2)'/2 = /2 ~ 1.44
« Metacommunity II: B;; = 2 x (1)/2 =2
« Metacommunity I1I: B;;; = & ’;_2 (approches 0 with higher k)

The classic approach, exemplified by Whittaker’s ratio, shows a decrease in beta diversity
when a new common species is added to the metacommunity. This is expected as the classic
approach prioritizes the distinctiveness of communities based on species turnover. This is

true regardless of the metacommunity structure (as 1 is always larger than Z%S)

In contrast, our geometric approach exhibits a more nuanced response. It recognizes that
adding novel combinations of species has the potential to increases spatial variations (meta-
community I vs IT), while at the same time, it recognizes the potential homogenizing effect
of overwhelming shared species on community composition (metacommunity II vs III).

S1



S2 Examples of the definition of convex hull

Here we show how the abstract definition of the convex hull (3) operates with two concrete
examples.

For the example of Metacommunity I in Figure 1, the convex hull P is not just these three
points, but rather the entire triangle region bounded by these points ((1,0), (0,1)) and the
origin (0,0). This is mathematically expressed as:

P = {all points (z,y) that can be written as: (S1)
A1(1,0) + A2(0,1) + (1 — A — X2)(0,0)} (S2)
={(z,y) = (A, M)} (S3)

where A\, Ay > 0 and \; + Ay < 1. This corresponds to exactly the triangle region we see in
Figure 1C.

For the example of Metacommunity II in Figure 1, the convex hull P is not just these three
points, but rather the entire triangle region bounded by these points ((1,0),(0,1),(1,1))
and the origin (0,0). This is mathematically expressed as:

P = {all points (z,y) that can be written as: (S4)
A1(1,0) + A2(0,1) + A3(1,1) + (1 — Ay — A2 — A3)(0,0)} (S5)
={(z,9) = (M + A3, A2 + A3)} (S6)

where A\, Ao, A3 > 0 and A\ + Ay + A3 < 1. This corresponds to exactly the square region we
see in Figure 1C.
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S3 Scaling of beta diversity with unique community
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Figure S1: Same as Figure 2 except considering metacommunities with 4 species.

The

maximum number of unique patch compositions is 2* — 1 = 15. The gray level corresponds
to the number of communities with the same coordinates.
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Figure S2: Same as Figure 2 except considering metacommunities with 5 species. The
maximum number of unique patch compositions is 2° — 1 = 31. The gray level corresponds
to the number of communities with the same coordinates.
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Figure S3: Same as Figure 2 except considering metacommunities with 6 species. The
maximum number of unique patch compositions is 2° — 1 = 63. The gray level corresponds
to the number of communities with the same coordinates.
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S4 Variation of geometric beta diversity with the same
number of unique species combinations

Our geometric framework considers both the number of unique species combinations and
the richness of those combinations. When the number of unique species combinations is
equal, our approach generally favors metacommunities with higher species richness within
those combinations (Figure 2 and Section S3). This is ecologically relevant because
species-rich communities often have complex interactions and dynamics that are not cap-
tured by simply counting distinct species.

Our approach’s emphasis on species richness becomes more apparent when considering meta-
communities with more than two species (as is always the case in nature). For example,
consider three sites and three communities. The metacommunity I has one distinct species
at each site, and its metacommunity matrix reads as

A B C
Community 1 /1 0 0
Community 21 0 1 0
Community 3\0 0 1

The metacommunity II has two species at each site but with different combinations, and its
metacommunity matrix reads as

A B C
Community 1 /1 1 0
Community 2( 0 1 1
Community 3\1 0 1
Classic measures would favor Metacommunity I, as it has complete species turnover between
sites. However, our geometric measure assigns a higher beta diversity to Metacommunity
IT (8%, = 1.65 and BIL = 2.08). This is because, while both metacommunities have three
unique combinations, our approach recognizes that species-rich communities can contribute
substantially to spatial variation, even when they share some species with other communities.
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S5 Complementarity of our geometric measure to clas-

sic measure
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Figure S4: We study all possible configuration of metacommunities with 3 species. The
horizontal axis shows the geometric beta diversity, while the vertical axis shows the classic
Whittaker’s ratio measure.
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Figure S5: Same as Figure S4 except the metacommunities have 4 species.
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S6 Maximize beta diversity with weighted embedding

Here we derive the maximum beta diversity with weighted embedding.

S6.1 Gamma diversity = 2

Following Eqn. (5), for a 2-species metacommunity, we have the weighted metacommunity
matrix,

A B
Community 1 3p1 0
Community 2 ( 0 3pa ) (S7)
Community 3 \3(1 —p; —p2) 3(1 —p1 — p2)

where p; represents the proportion of communities with only species A, while ps represents
the proportion of communities with only species B.

The area vol of the embedded metacommunity is

1 1 9
vol = 3 X 3p1 X 3(1 —p1 —p2) + 5 X 3pa X 3(1 —p1 —p2) = §(p1 +p2)(1 —p1 —p2) (S8)

The area is maximized when p; + py = 1/2.

05 Prop of B

Prop of A

Figure S6: The two horizontal axes represent the proportion of patches with only species
A or B, respectively. The vertical axis represents the area of the corresponding embedded
metacommunities. We observe that the area is maximized when the proportion of patches
containing both species A and B is half.

S6.2 Generalized variance and multivariate Bernoulli entropy
It is easy to show from equations S12 and S14 that the maximum beta diversity using the

generalized variance and the multivariate Bernoulli entropy when gamma diversity = 2 are
achieved when all community compositions have equal prevalence (see more details in S8.1
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and S8.2). Here we will just give heuristic explanations about why this is the case. The
generalized variance is a multivariate version of the variance. Its maximal value is achieved
when the data show the highest dispersion. When gamma diversity = 2, this condition
is achieved when the numbers of each unique composition are equal. For the multivariate
Bernoulli entropy, maximum entropy is always achieved with a uniform distribution, which
means that the prevalence of each community composition is the same. This differs from
the conditions of maximum beta diversity using the geometric embedding.

S7 Nestedness-turnover decomposition

We discussed the interpretation of the nestedness-turnover decomposition using (3, in the
main text. Here, we discuss how to interpret the nestedness-turnover patterns in the other
geometric measures Syar and i, (Box 1 in the main text).

S7.1 Generalized variance

The nestedness and turnovers among communities are naturally captured by the correlation
matrix X in equation S13: The distribution of correlation coefficients of a fully nested meta-
community are strictly positive (Fig. S7); the correlation distribution of a metacommunity
with full turnover is strictly negative; and the correlation distribution of a metacommunity
with randomly associated species is symmetric around 0.
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Figure S7: The histogram of the Pearson correlation coefficients of the correlation matrix
X in equation S13 with 50 sites and 50 species.

Equation S13 states that both nestedness and turnover will reduce the beta diversity hyper-
volume. And their relative importance should be examined by the influence on the det(X).
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S7.2 Information theory

In the entropy measure, the nestedness and turnovers among communities are reflected by
the distribution of species richness in a metacommunity (Fig. S8). In a fully nested meta-
community, the species richness distribution is uniformly distributed; in a metacommuity
with complete turnover, the species richness distribution is concentrated in the low richness
part (at least less than 50% of the maximum richness); in a metacommunity with random
species association, the species richness should be roughly normally distributed.
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Figure S8: The histogram of the species richness of different communities with 50 sites and
50 species.
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S8 Linking the geometric approach to classic formalisms

S8.1 Generalized variance

Building upon Legendre & De Céceres (2013), it is straightforward to derive a hypervolume
definition of beta diversity based on the covariance matrix of the metacommunity matrix.
One natural extension of the concept of variance in the high-dimensional case is the gener-
alized variance, which is calculated as the determinant of the covariance matrix (Lu et al.,
2021).

To unveil the insights in the generalized variance, we first look at metacommunities with
only 2 species. The distribution in a 2-species metacommunity matrix can be characterized
by a multivariate Bernoulli distribution in 2 dimensions. Let us denote the occurrence of the
2-species community as X = [X4, X, the proportion of communities with only species A as
pa, the proportion of communities with only species B as pg, the proportion of communities
with both species as pap. Then pa+pp+pap = 1 (excluding empty communities; Anderson
et al., 2006), and the probability mass function of a community composition is:

P(X =2)=P(X4 =24, Xp=1ap) = pi‘%meffA(l_IB)pg_“)xB. (S9)
Given equation S9, the covariance matrix of the bivariate Bernoulli distribution is:

VAR(X) = E(XXT) — E(X)E(X)”

_|(M=pB)ps —paps (S10)
—paps (1 —=pa)pal’

Note that the covariance between species A and species B is always < 0 because of the
exclusion of double-absence states, and this term is just the negative C-score for pairwise
species association (Keil et al., 2021).

Here, we define the hypervolume of the metacommunity as the generalized variance of this
covariance matrix, which is the determinant det[VAR(X)]. The geometric interpretation
is the hypervolume of the corresponding ellipse formed by the embedded metacommunity:.
Specifically, the volume of the ellipse is defined by a certain quantile (e.g. 95 %) of the normal
distribution with the given covariance matrix (Lu et al., 2021). Figure 8A-B illustrates two
examples of metacommunity with Syar.

With this elliptic volume, we can define the corresponding measure of beta diversity Syvar
(the underscript highlights the use of variance):

Bvar = 2 x (det[VAR(X)])*/2. (S11)

The beta diversity fSyar of a 2-species metacommunity is the product of species-level vari-
ances and a cross-species association. The cross-species association is the ratio between
the co-occurrence probability, pap and the expected co-occurrence probability given the
marginal occurrence probabilities of A and B (which are respectively 1 — pg and 1 — pa),
while the products of species-level variances is a monotonic transformation of the dispersion-
based beta diversity (Legendre & De Caceres, 2013).
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To interpret the terms more clearly, we take the log of the beta diversity Svar to make the
terms additive:

log(fvar) = log(2) + ;(log(m) + log(pp) + log(pag))

PAB ]) (812)
1 —pa)(1—ps)

species association

= log(2) + ;(log[pA(l —pa)| + log[ps(1 — pp)] + log[(

—_———
v diversity

species-level variances

Therefore, the generalized variance definition of beta diversity naturally partitions the com-

position variation into a classic beta diversity measure and a spatial association component
(Keil et al., 2021).

Under the constraint that p4 + pg + pap = 1, the generalized variance is maximized when
pa = pp = pap. This is equivalent to saying that the generalized variance is maximized
when each combination of community compositions are equally represented in the metacom-
munity matrix, which gives less weight to the mixed community compared to the geometric
embedding approach.

We can generalize fyar (Eqn. S11) to higher dimensions (Lu et al., 2021):

BVAR =d x (H g; det(X))l/d, (813)
i=1
where X is the correlation matrix calculated from pairwise co-occurrence of all species in
the metacommunity. Similar geometric partitioning as Eqn. S12 is straightforward.

Because of the dual representation of a metacommunity matrix as a multivariate function
of either species or communities. Equations S9-S13 are equally applicable to a multivariate
Bernoulli distribution with community occupancy as a random variable. Then equation S13
will partition the total beta diversity hypervolume into site-level contributions and a site
association component, which is similar to the partitioning of dispersion-based beta diversity
(Legendre & De Caceres, 2013).

S8.2 Information theory

Information theory has long assisted biodiversity measurement (see a historical overview in
Chao et al. 2014). Entropy measures, such as Shannon’s and Renyi’s entropy, have been
traditionally used to quantify the unevenness of species abundance distributions within a
local community (Jost, 2007). More recently, it has been shown that the relative entropy
(Kullback—Leibler divergence) between the local and regional abundance profiles belongs to
the general family of unevenness measures defined by the Hill numbers (Chao & Ricotta,
2019), which are directly linked to conventional beta diversity metrics such as the Jaccard
and Sgrensen indices (Chao et al., 2014). Given the close connection between entropy and
species diversity (Jost, 2007; Godsoe et al., 2022), it is natural to extend the use of entropy
to quantify the beta diversity hypervolume. Although not originally designed as a geometric
measure, the entropy has a geometric interpretation as the effective size of the support of a
random variable (Grendar, 2006). In the case of a multi-dimensional discrete probabilistic
distribution, Shannon’s entropy can be seen as a measure of the combinatorial volume of the
distribution (Jankovic, 2009). The joint entropy of the multivariate Bernoulli distribution
was proposed as a beta diversity metric long ago (Juhasz-Nagy & Podani, 1983), but has
been largely neglected until recently (Tsakalos et al., 2022).
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Following equation S9, the joint entropy H (X)) of the bivariate Bernoulli distribution is used
as a measure of the hypervolume beta diversity [Sinso:

Binfo = H(X) = —[palog(pa) + pplog(pg) + pas log(pas)]. (S14)

The joint entropy is also maximized when ps = pp = pap (a well-known property that
the maximum entropy is always achieved with a uniform distribution). The contribution
of species A and B to the total beta diversity are given by the entropies of the marginal
Bernoulli distributions (Juhész-Nagy & Podani, 1983):

H(X4) = —[palog(pa) + (1 — pa) log(1 — pa)l, (S15)
H(Xp) = —[pplog(ps) + (1 — pp)log(1 — ps)]. (516)
The spatial association component is given by the mutual information between species A

and B:
I(X)=H(X4)+ H(Xp) — H(X). (S17)

When generalized to high dimensions, Eqn. S17 becomes:

1(X) = Y H(X,) - H(X). (S18)
i=1
Eqn. S14 becomes:
271
Binfo = Z Zp( )log (819)
a=1 i€a

where 7 denotes the species richness of the metacommunity, a denotes the species rich-
. (a) o o

ness of a community, and p, ’ denotes the occurrence probablhty of community ¢ whose

species richness equals to . The summation — 3, pZ @) Iog(pZ )) gives the contribution of

communities with « diversity to the total beta diversity hypervolume.

It is also worthwhile to look at the simplifying scenario when all communities with the
same «a diversity have an equal occurrence probability p(®. This assumes that the density
dependent effects are equal among interacting species. Equation S19 then becomes:

oo = = 32 (1)) (s20)

a=1

If the multivariate Bernoulli distribution is treated as the distribution of community occu-
pancy, then p; in eqn. S20 is interpreted as the probability that a given set of communities
will be occupied by a species. Again, by assuming that p; is the same when the number of
communities occupied by a species is fixed, Eqns. S19 and S20 can be respectively rewritten
as:

N
Bino = — 3.3 p" log(p™), (S21)

Binfo = — nzl En ) Vlog(p™™), (S22)

where N denotes the total number of communities, n denotes the number of communities

occupied by a species, and p§") denotes the probability that n selected communities will be

(n)

occupied by species i. Empirically, p, " is estimated by the relative frequency of species that
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occupies the n selected communities in the metacommunity. Therefore, Eqn. S21 partitions
total beta diversity hypervolume into contributions of species with different prevalence in
the metacommunity.

p§”) has a close relationship with zeta diversity (,, which measures the mean number of

species shared by n communities (Hui & McGeoch, 2014). The sum of all pz(»n) that occupy
the same number of communities is a linear transformation of standardized (,:

EZPTJZZ<N>N§?4@4Jm+”<Nt:?>QHwL (S23)

icn n;) = w

When pgn) are equal for all different site compositions, the zeta diversity of order n is:

27"

Cn

which justifies the use of an exponential function of zeta diversity to detect stochastic as-
sembly (Hui & McGeoch, 2014).
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S9 Dealing with continuous data

In addition to the presence/absence data typically analyzed in metacommunities, continuous
data, such as species abundances, are also commonly encountered. A significant challenge
with continuous data is the “point-in-the-middle” phenomenon in the convex hull approach.
This phenomenon occurs when the embedded representation of a community lies within the
convex hull defined by the other communities. This happens because the convex hull is only
sensitive to the peripheral points, ignoring internal variations. Notably, this issue does not
occur with presence/absence data.

To illustrate, consider three sites characterized by different compositions of species A and
B, with abundance vectors of (10, 0), (0, 10), and (10, 10). When adding a fourth site with
an intermediate abundance vector (5, 5), this point is positioned within the interior of the
convex hull of the original three sites. Consequently, the convex hull method fails to fully
capture the nuances of community differences because it only accounts for the outermost
points, disregarding internal diversity patterns.

To more effectively deal with continuous data, we recommend employing a generalized vari-
ance approach. This approach better captures the impact of interior points by directly
accounting for changes in multivariate variability, rather than merely relying on spatial po-
sitioning within a convex hull. We demonstrate the advantage of this approach below using
the same example.

For the first metacommunity (sites with abundance vectors (10, 0), (0, 10), (10, 10), and (0,

0)):

10 0
0 10 33.3 0
Z = 10 10 = VAR(Z) = ( 0 33.3> = Pvar = 2 X (det(VAR(Z))) = 66.67
0 0 PR S——
ovarliance matrix
Metacommunity matrix
(S25)
Upon adding the interior point (5, 5) to create a new metacommunity:
10 0
0 10 25 0
Z = 10 10 = VAR(Z) = (O 25) = fvar = 2 X (det(VAR(Z))) = 50
5 5 .
0 0 Covariance matrix
—_——

Metacommunity matrix
(S26)
As demonstrated, the generalized variance approach appropriately captures the effect of
adding the intermediate point, resulting in a decrease in beta diversity from 66.67 to 50. This
result aligns with ecological intuition, as the addition of an intermediate point contributes
differently to beta diversity compared to extreme values.
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S10 Computation of hypervolume

We have provided an R package betavolume (https://github.com/clsong/betavolume)
that provides a user-friendly interface to compute beta diversity using the methods discussed
below.

S10.1 Geometric embedding

Hypervolume of geometric shapes in high dimension is notoriously difficult to estimate.
Fortunately, we do not need to compute the hypervolume of arbitrary geometric shape (e.g.,
this is typically required for fundamental niches). Instead, given the geometric embedding
we have here, we are tasked with a specific geometric shape: convezr polytope (Eqn. 3
in the main text). Convex polytope is the most fundamental and well-studied shape in
computational geometry (Preparata & Shamos, 2012). Nonetheless, ruled by the curse of
dimensionality, its hypervolume estimation is still a hard computational problem (Dyer &
Frieze, 1988). We summarize some available computational methods, which offered a range
of trade-offs between accuracy and efficiency.

A deterministic method is through the Delaunay triangulation. R package geometry (Habel
et al., 2019) provides an interface to the Matlab library qhull (Barber et al., 1996). This
method can provide almost exact estimates of the hypervolume, and it is efficient for relative
low dimensions (< 20). However, its run-time grows exponentially with the dimension, which
makes it unpractical when the metacommunity has many communities.

A probabilistic method is more preferred for higher dimensions (especially > 20). In brief,
a statistical method known as Multiphase Monte Carlo allows efficient geometric random
walks. This has led to many practical probabilistic methods, such as Sequence of Balls
(Emiris & Fisikopoulos, 2018), Cooling Gaussians (Cousins & Vempala, 2016), and Cooling
convex Bodies (Chalkis et al., 2019). R package volesti (Fisikopoulos et al., 2021) provides
an interface to the C++ library VolEsti (Chalkis & Fisikopoulos, 2020), which implements
the aforementioned methods. These methods are possible even in hundreds of dimensions.
Notably, its computation time is not ignorable, which makes it unpractical when we deal
with many metacommunities.

For even faster computations (at the expense of accuracy), a heuristic method based on
multivariate normal distributions is available (Lu et al., 2021). In brief, it first estimates
the covariance matrix from community data, then the determinant of the covariance matrix
is used to calculate the hypervolume of the high-dimensional ellipsoid.

A caveat though is that a n-dimensional cube would have a estimated hypervolume of 47".
To make the hypervolume comparable across dimensions, we re-scale the hypervolume by
4" (which is a common practice, e.g., see Grilli et al. 2017). As a side note, we do not use
the widely used R package hypervolume (Blonder & Harris, 2019), because it is not best
suited to provide accurate nor fast estimation of convex polytopes (Mammola, 2019).

S10.2 Generalized variance

For the numerical implementation of equation S13 in high dimensions, we recommend first
calculating the PCA of the correlation matrix R and then take the product of eigenvalues
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https://github.com/clsong/betavolume

A; that capture at least 99% of the total variance for dim > 4, or when singular matrix is
encountered:

n k
i=1 j=1

An advantage of the PCA implementation is that the determinant of the correlation matrix
can be further partitioned into individual eigenvalues, which quantifies the contributions of
associations among species groups on the PCA axes.

S10.3 Information measure

In calculating the high dimensional information measure (equation S19), if it is of more
interest to only investigate the richness-dependent effect of different communities (such as
when species are believed to be functionally equivalent or similar), implementing equation
S20 can reduce the computational time by only counting the number of communities with
different richness.

S10.4 Computational complexity

We benchmark the computational time to calculate the geometric beta diversity on a com-
puter with the generalized variance approach. Timings were carried out on a computer with
an Apple M1 processor.
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Figure S9: The horizontal axis shows the number of species (gamma diversity) in the meta-
community. The lines show different numbers of sites. The vertical axis shows the time
(unit is second) to compute the geometric beta diversity of corresponding metacommunities
with the generalized variance approach.
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Figure S10: The horizontal axis shows the numbers of sites in the metacommunity. The
lines show different numbers of species (gamma diversity). The vertical axis shows the time
(unit is second) to compute the geometric beta diversity of corresponding metacommunities
with the generalized variance approach.
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